Lockheed Martin Distinguished Speaker Series
Designing Secure Hardware Systems
Shawn Blanton
Trustee Professor, Electrical and Computer Engineering
Carnegie Mellon University
1:00-2:00pm Friday 7 Feb. 2020
Commons 329, UMBC
University Center Ballroom
On October 29, 2018, DARPA issued an RFI that stated: “This Request for Information (RFI) from the Defense Advanced Research Projects Agency’s (DARPA) Microsystems Technology Office (MTO) seeks information on technology, concepts, and approaches to support the integration of security capabilities directly into System on Chip (SoC) system design and to enable the autonomous integration and assembly of SoCs.
This RFI and the tens of millions of dollars that the US government has already invested in hardware security research and development is based on the fact that the fabrication of state-of-the-art electronics is now mostly overseas. With the recent announcement that GLOBALFOUNDRIES is going to stop all 7nm development, there is now only one company in the US that continues to pursue advanced semiconductors (Intel). Unfortunately, Intel does not have the same experience of making chips for third parties as does Samsung and (most importantly) TSMC (Taiwan Semiconductor Manufacturing Corporation). As a result, the US government believes it will be forced to fabricate advanced, sensitive electronics overseas in untrusted fabrication facilities. As a result, there is keen interest in design methodologies that mitigate reverse engineering, tampering, counterfeiting, etc.
In this talk, an overview of hardware security will be presented followed by a discussion on a concept called logic locking. This approach will be described and the “back and forth” that is now occurring in the research community involving: (i) vulnerability discovery and (ii) logic locking improvement.
Shawn Blanton is a professor in the Electrical and Computer Engineering Department at Carnegie Mellon University and Associate Director of the SYSU-CMU Joint Institute of Engineering (JIE). In 1995 he received his Ph.D. in Electrical Engineering and Computer Science from the University of Michigan, Ann Arbor. His research interests include various aspects of integrated system tests, testable design, and test methodology development. He has consulted for various companies and is the founder of TestWorks, a Carnegie Mellon University spinout focused on information extraction from IC test data. He is a Fellow of the IEEE and Senior Member of the ACM and served as the program chair for the 2011 International Test Conference.