Opportunities in Computational Materials Science
Juana Moreno and Randall Hall
Center for Computation and Technology
Louisiana State University
1:00pm Friday 9 September 2011, ITE 227
The White House Materials Genome Initiative intends to double the speed with which we discover, develop, and manufacture new materials. In order for this initiative to be successful an unprecedented collaboration between computer scientists, applied mathematicians, computational scientists, and engineers with expertise in each of the aspects of the simulation-guided design of modern materials must be established. We must also take advantage of the enormous national investments in the next generation of hyperparallel, heterogeneous, multicore supercomputers to develop experimentally verified algorithms. In this talk I will describe new collaborative efforts in Louisiana towards developing a State-wise team of scientist to attack the challenges in the design of new materials, and the current opportunities at the undergraduate and graduate level.
Dr. Juana Moreno is an Assistant Professor in the Department of Physics and Astronomy at LSU. She received her Ph.D. in condensed matter physics from Rutgers University and was faculty at the University of North Dakota before joining CCT. Her research focuses on modeling, using a variety of computational tools, the transport and magnetic properties of correlated electron systems, including diluted magnetic semiconductors, heavy fermion compounds and low-dimensional systems.
Dr. Randall Hall received his B.S. in Chemistry from UC Berkeley and his PhD in Chemistry with Bruce Berne from Columbia University. He was a postdoctoral associate with Peter Wolynes at the University of Illinois, Urbana-Champaign. He joined the faculty at LSU in 1986. He is currently the Webster Parish Chapter Alumni Professor at LSU. He is a co-PI of the Louisiana Alliance for Simulation-Guided Materials Appliations (LA-SiGMA).
Host: Yelena Yesha