Making in the Classroom: the Rationale, the Challenge and the Imperative
Professor Francis Quek
Department of Visualization, Texas A&M University
3:00-4:00pm Thursday, 6 April 2017, ITE 217, UMBC
Computing is increasingly focused in interaction with the physical world rather than just in the abstract virtual world of screens and pixels. Physical computing combines the design of physical electronics with computation to bring about possibilities that simply interacting with pixels behind glass cannot. One manifestation of physical computing in our culture is seen in the Maker movement. Technologies such as 3D printing and open source electronics and accessible computing have combined to give rise to a Maker movement that promises to broaden participation in technology-based innovation and production. The potential of Making to enhance learning, especially in areas of Science, Technology, Engineering and Mathematics (STEM) has led to calls to bring Making into education. However, the characteristics of innovation, discovery, and student-directed learning for which Making is prized is not easily incorporated into public school learning. Making-based learning are thus often provided in clubs, community Makerspaces, and workshops. This poses a severe issue of equity as youth participants are implicitly self-selected through parents who have the knowledge and means to enroll their children at such venues. Taking a human-centered perspective, we present a project where Making is integrated with the formal curriculum of a public elementary school that serves predominantly underrepresented populations. We will examine the rationale for employing Making-based classroom learning and review our strategy for curriculum alignment. We will see how our ‘double scaffolding’ approach supports both learning of STEM curricula and knowledge and skills associated with computing and Making. Beside learning STEM material, our approach seeks to support the development of STEM self-efficacy and self-identities in children who may not otherwise see these possibilities in themselves. We present results of our year-long study that show the promise of our approach.
Professor Francis Quek is a Professor of the Department of Visualization (and by courtesy, Professor of Computer Science and Engineering and Professor of Psychology) at Texas A&M University. He joined Texas A&M University as an interdisciplinary President’s Signature Hire to bridge disparities in STEM. Formerly he has been the Director of the Center for Human-Computer Interaction at Virginia Tech. Francis received both his B.S.E. summa cum laude (1984) and M.S.E. (1984) in electrical engineering from the University of Michigan. He completed his Ph.D. in Computer Science at the same university in 1990. Francis is a member of the IEEE and ACM. He performs research in Making for STEM learning, embodied interaction, embodied learning and sensemaking, multimodal verbal/non-verbal interaction, multimodal meeting analysis, interfaces to support learning, vision-based interaction, multimedia databases, medical imaging, assistive technology for the blind, human computer interaction, computer vision, and computer graphics. He leads several multiple-disciplinary research efforts to understand the communicative realities of multimodal interaction.